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Abstract. This research explores the use of mobile application traffic data to inter-
pret urban land cover classification using explainable machine learning methods. 
The experiments using a high-resolution mobile service traffic data in Paris, France 
show that the hourly downlink traffic of Microsoft Office, Netflix, and Uber together 
with the XGBoost model can accurately classify land cover types and the SHAP 
values help interpret instance-level feature importance and their spatial patterns. 
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1. Introduction
Explainable AI methods have been applied in geospatial analysis such that human 
can understand how machine learning models use the input features to make pre-
dictions in geographical phenomenon. Common methods include tree-based expla-
nations, game theory-based explanations, local surrogate models, and so on (Xing 
& Sieber 2023).  In the studies of location-based services, McKenzie et al. (2015) 
used the information gain to understand global feature importance of temporal 
check-ins for points-of-interest (POI) classification. However, less attention has been 
paid to spatial-explicit local explanations (i.e., individual predictions and their spatial 
patterns). This research aims to explore what kinds of mobile service features (as 
proxies of human activities) are critical for interpreting urban land cover classification 
in different regions of cities.  

2. Datasets and Preprocessing
Mobile application traffic data: In this research, we employ a high spatiotemporal 
resolution of service-level mobile traffic dataset in Paris, France (Martínez-Durive et 
al. 2023), which provides time series of the uplink and downlink traffic generated by 
68 mobile applications (e.g., Instagram, Facebook, Netflix, YouTube, Microsoft Of-
fice, Google Maps, Uber, etc.) at each 100×100 m2 grid/tile every 15 minutes. Figure 
1 shows the spatial distributions of hourly downlink service traffic of “Microsoft Office” 
in urban area of Paris on a typical workday (March 18, 2019).  

Urban land cover data: We employ the Corine Land Cover (CLC) 2018 dataset pro-
duced by the Copernicus Land Monitoring Service and coordinated by the European 
Environment Agency, which provides high-resolution (100×100 m2) and thematically 
detailed information on land cover across Europe (Büttner 2014). The dataset con-
tains 44 land cover classes in the hierarchical 3-level CLC nomenclature and there 
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are 19 classes in the study area (as shown in Figure 2 and Table 1). The land cover 
layer is further spatially joined to the mobile data service grids layer to create a uni-
fied time-series data frame for downstream explainable machine learning tasks. 

Figure 1. The spatial distributions of hourly downlink traffic of the Microsoft Office service. 

Figure 2. The spatial distributions of Corine Land Cover classes in Paris. 

Table 1. Top-10 land cover classes and their distribution percentage in the study area. 

Land Cover Type Percent (%) Land Cover Type Percent (%) 

Discontinuous urban fabric 52.4 Industrial or commercial units 12.7 

Continuous urban fabric 11.3 Green urban areas 6.0 

Broad-leaved forest 5.1 Sport and leisure facilities 2.8 

Airports 2.5 Road and rail networks 2.0 

Non-irrigated arable land 1.7 Water courses 1.0 
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3. Methods

3.1. Machine Learning Models 
In this research, we employ the following machine learning models for land cover 
multiclass classification based on the unified time-series data of mobile service traffic 
introduced in Section 2.   

     XGBoost: is a regularized gradient boosting learning method for optimizing the 
ensemble of decision-trees and reducing the model overfitting. The "XGBClassifier" 
is trained for multiclass classification with the softmax objective and 300 gradient 
boosted trees with the max depth of 5.  

     Multi-Layer Perceptron (MLP): is a feedforward artificial neural network. We use 
a MLP classifier with two hidden layers of 100 fully connected neurons with a recti-
fied linear activation function and a learning rate of 0.001.  

    Transformer: is a deep neural network that uses self-attention mechanisms to 
draw global dependencies in sequence modeling (Vaswani et al. 2017). We design 
a multi-head transformer neural network with 40k parameters for the time series land 
cover multiclass classification in this research.  

3.2. SHAP Values for Model Interpretability 
Then, we utilize the model-agnostic SHAP (SHapley Additive exPlanation) values 
(Lundberg & Lee 2017), which provide a unified approach to interpreting the above-
mentioned machine learning models' performance. The local explanation method 
aims to ensure an explanation function g(z') ≈ f(hx(z')) when z' ≈ x', where f is the 
original prediction model and x' is simplified inputs that can map to the original inputs 
x through a mapping function hx(x'). The explanation function g is defined as a linear 
function of binary variables:  

𝑔(𝑧$) = 	∅)	 +	+∅,𝑧′,

.

,/0

 

where z' ∈ {0, 1}M, M is the number of simplified input features, ∅, are the Shapley 
values that measure how much a feature's value changes the model 's prediction 
with a game-theory sampling strategy. Local explanation methods help interpret the 
impact of input features on individual predictions (e.g., a single sample data point or 
a couple of sample data points). There exist different algorithms to compute the 
SHAP values (Lundberg et al. 2018); here, we apply the tree-based explainer for the 
XGBoost model and the kernel-based explainer for the MLP and transformer models 
to get their corresponding SHAP values using the 'shap' Python package. Further-
more, we perform the spatial analysis to understand the spatial patterns of SHAP 
values of each feature on specific land cover type predictions.  

4. Experiments and Results
In the experiments, we select three mobile data service apps (i.e., Netflix, Microsoft 
Office, and Uber) due to their popularity and they potentially represent people's stay-
at-home, working, and transportation activities in the city. The unified time-series 
data frame contains the hourly average downlink traffic of these mobile services for 
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each 100x100 m2 tile/grid of Paris on a typical workday. Therefore, we have 24*3=72 
features/attributes and 1 target variable (land cover type) as inputs for all the ma-
chine learning models. We then split the data with 80% for model training and 20% 
for testing. As shown in Table 2,  the XGBoost model with accuracy of 0.91 outper-
forms the MLP and the Transfomer regarding the multiclass land cover classification 
on the testing data while their mean F1-score (macro) are very close. In the follo-
wing, we only report the best performing model (XGBoost)'s interpretability.  

    Figure 3 shows the SHAP value computation results of top-20 most influential fea-
tures on the type-specific land cover classification using the XGBoost model. Over-
all, both daytime and night hours of Microsoft Office service traffic, midnight Netflix 
and Uber traffic have larger magnitude of impact on the classification output of the 
testing data. However, the effects of those hourly features are different for specific 
land use type. For instance, the service traffic features "Office 1:00~1:59" has the 
largest impact on the "Airport" while "Office 9:00~9:59" has the largest impact on the 
"Industry and Commercial Units". Interestingly, the spatial patterns of SHAP values 
are also varying. Figure 4 shows the spatial distributions of SHAP values of the sel-
ected feratures for the classification of "Continuous Urban Fabric" type. We find that 
"Office 9:00~9:59" traffic has moderate positive impact across the study area but 
"Netflix 2:00~2:59" and "Uber 23:00~23:59" traffic have strong distinctive impacts in 
the urban center (mostly positive) and suburb (most negative) of the city, which 
demonstrates the spatial heterogeneity of individual feature importance.  

Table 2. The comparison of different machine learning models' performance (accuracy and 
F1-score) on land cover classification for the testing data. 

Testing Accuracy F1-Score (macro) 
XGBoost 0.91 0.80 

Multi-Layer Perceptron (MLP) 0.87 0.79 
Transformer 0.82 0.76 

Figure 3. The SHAP values of different features for the XGBoost model. 
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Figure 4. The spatial distributions of SHAP values of the selected feratures. 

5. Conclusion
This research utilizes the model-agnostic SHAP values to interpret the in-
stance-level feature impacts of hourly mobile application traffic in the urban 
land cover classification using machine learning models. The experiments 
using high-resolution mobile traffic and land cover data in the city of Paris 
show a promising performance of XGBoost in model accuracy and good in-
terpretability with the selected temporal bands of Microsoft Office, Netflix, 
and Uber mobile service traffic. The results also demonstrate the spatial het-
erogeneity of instance-level feature importance in explainable machine 
learning models. Future work will further explore the interaction effects of 
different features and on other mobile applications as well as deeper under-
standing of human-environment interactions from the explainable GeoAI per-
spective. 
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